Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Complement Med Ther ; 21(1): 41, 2021 Jan 21.
Article in English | MEDLINE | ID: covidwho-1041078

ABSTRACT

BACKGROUND: The latest coronavirus SARS-CoV-2, discovered in China and rapidly spread Worldwide. COVID-19 affected millions of people and killed hundreds of thousands worldwide. There are many ongoing studies investigating drug(s) suitable for preventing and/or treating this pandemic; however, there are no specific drugs or vaccines available to treat or prevent SARS-CoV-2 as of today. METHODS: Fifty-eight fragrance materials, which are classified as allergen fragrance molecules, were selected and used in this study. Docking simulations were carried out using four functional proteins; the Covid19 Main Protase (MPro), Receptor binding domain (RBD) of spike protein, Nucleocapsid, and host Bromodomain protein (BRD2), as target macromolecules. Three different software, AutoDock, AutoDock Vina (Vina), and Molegro Virtual Docker (MVD), running a total of four different docking protocol with optimized energy functions were used. Results were compared with the five molecules reported in the literature as potential drugs against COVID-19. Virtual screening was carried out using Vina, molecules satisfying our cut-off (- 6.5 kcal/mol) binding affinity was confirmed by MVD. Selected molecules were analyzed using the flexible docking protocol of Vina and AutoDock default settings. RESULTS: Ten out of 58 allergen fragrance molecules were selected for further docking studies. MPro and BRD2 are potential targets for the tested allergen fragrance molecules, while RBD and Nucleocapsid showed weak binding energies. According to AutoDock results, three molecules, Benzyl Cinnamate, Dihydroambrettolide, and Galaxolide, had good binding affinities to BRD2. While Dihydroambrettolide and Galaxolide showed the potential to bind to MPro, Sclareol and Vertofix had the best calculated binding affinities to this target. When the flexible docking results analyzed, all the molecules tested had better calculated binding affinities as expected. Benzyl Benzoate and Benzyl Salicylate showed good binding affinities to BRD2. In the case of MPro, Sclareol had the lowest binding affinity among all the tested allergen fragrance molecules. CONCLUSION: Allergen fragrance molecules are readily available, cost-efficient, and shown to be safe for human use. Results showed that several of these molecules had comparable binding affinities as the potential drug molecules reported in the literature to target proteins. Thus, these allergen molecules at correct doses could have significant health benefits.


Subject(s)
Allergens/chemistry , Allergens/immunology , COVID-19 Drug Treatment , COVID-19/immunology , Odorants , Perfume/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Allergens/administration & dosage , Allergens/therapeutic use , Benzopyrans/chemistry , Benzopyrans/metabolism , Benzyl Compounds/chemistry , Benzyl Compounds/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Diterpenes/chemistry , Diterpenes/metabolism , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Docking Simulation , Perfume/administration & dosage , Perfume/therapeutic use , Phosphoproteins/chemistry , Phosphoproteins/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
2.
J Proteomics ; 234: 104083, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-988504

ABSTRACT

Using high-throughput BioPlex assays, we determined that six fractions from the venom of Conus nux inhibit the adhesion of various recombinant PfEMP-1 protein domains (PF08_0106 CIDR1α3.1, PF11_0521 DBL2ß3, and PFL0030c DBL3X and DBL5e) to their corresponding receptors (CD36, ICAM-1, and CSA, respectively). The protein domain-receptor interactions permit P. falciparum-infected erythrocytes (IE) to evade elimination in the spleen by adhering to the microvasculature in various organs including the placenta. The sequences for the main components of the fractions, determined by tandem mass spectrometry, yielded four T-superfamily conotoxins, one (CC-Loop-CC) with I-IV, II-III connectivity and three (CC-Loop-CXaaC) with a I-III, II-IV connectivity. The 3D structure for one of the latter, NuxVA = GCCPAPLTCHCVIY, revealed a novel scaffold defined by double turns forming a hairpin-like structure stabilized by the two disulfide bonds. Two other main fraction components were a miniM conotoxin, and a O2-superfamily conotoxin with cysteine framework VI/VII. This study is the first one of its kind suggesting the use of conotoxins for developing pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as inhibitors of protein-protein interactions as treatment. BIOLOGICAL SIGNIFICANCE: Among the 850+ species of cone snail species there are hundreds of thousands of diverse venom exopeptides that have been selected throughout several million years of evolution to capture prey and deter predators. They do so by targeting several surface proteins present in target excitable cells. This immense biomolecular library of conopeptides can be explored for potential use as therapeutic leads against persistent and emerging diseases affecting non-excitable systems. We aim to expand the pharmacological reach of conotoxins/conopeptides by revealing their in vitro capacity to disrupt protein-protein and protein-polysaccharide interactions that directly contribute to pathology of Plasmodium falciparum malaria. This is significant for severe forms of malaria, which might be deadly even after treated with current parasite-killing drugs because of persistent cytoadhesion of P. falciparum infected erythrocytes even when parasites within red blood cells are dead. Anti-adhesion adjunct drugs would de-sequester or prevent additional sequestration of infected erythrocytes and may significantly improve survival of malaria patients. These results provide a lead for further investigations into conotoxins and other venom peptides as potential candidates for anti-adhesion or blockade-therapies. This study is the first of its kind and it suggests that conotoxins can be developed as pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as potential inhibitors of protein-protein interactions as treatment.


Subject(s)
CD36 Antigens , DNA Repair Enzymes , Erythrocytes , Intercellular Adhesion Molecule-1 , Mollusk Venoms , Plasmodium falciparum , Transcription Factors , Animals , CD36 Antigens/chemistry , CD36 Antigens/metabolism , COVID-19 , Conus Snail , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Erythrocytes/chemistry , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/metabolism , Mollusk Venoms/chemistry , Mollusk Venoms/pharmacology , Plasmodium falciparum/chemistry , Plasmodium falciparum/metabolism , Protein Domains , Protozoan Proteins , SARS-CoV-2 , Transcription Factors/chemistry , Transcription Factors/metabolism
3.
Structure ; 29(2): 186-195.e6, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-939287

ABSTRACT

Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the structural determination of numerous protein assemblies at high resolution, yielding unprecedented insights into their function. However, despite its extraordinary capabilities, cryo-EM remains time-consuming and resource-intensive. It is therefore beneficial to have a means for rapidly assessing and optimizing the quality of samples prior to lengthy cryo-EM analyses. To do this, we have developed a native mass spectrometry (nMS) platform that provides rapid feedback on sample quality and highly streamlined biochemical screening. Because nMS enables accurate mass analysis of protein complexes, it is well suited to routine evaluation of the composition, integrity, and homogeneity of samples prior to their plunge-freezing on EM grids. We demonstrate the utility of our nMS-based platform for facilitating cryo-EM studies using structural characterizations of exemplar bacterial transcription complexes as well as the replication-transcription assembly from the SARS-CoV-2 virus that is responsible for the COVID-19 pandemic.


Subject(s)
Cryoelectron Microscopy/methods , Mass Spectrometry/methods , Single Molecule Imaging/methods , Escherichia coli , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Methyltransferases/chemistry , Methyltransferases/metabolism , RNA Helicases/chemistry , RNA Helicases/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/ultrastructure , Transcription Factors/chemistry , Transcription Factors/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
4.
J Comput Aided Mol Des ; 34(12): 1237-1259, 2020 12.
Article in English | MEDLINE | ID: covidwho-841071

ABSTRACT

Computational protein-ligand docking is well-known to be prone to inaccuracies in input receptor structures, and it is challenging to obtain good docking results with computationally predicted receptor structures (e.g. through homology modeling). Here we introduce a fragment-based docking method and test if it reduces requirements on the accuracy of an input receptor structures relative to non-fragment docking approaches. In this method, small rigid fragments are docked first using AutoDock Vina to generate a large number of favorably docked poses spanning the receptor binding pocket. Then a graph theory maximum clique algorithm is applied to find combined sets of docked poses of different fragment types onto which the complete ligand can be properly aligned. On the basis of these alignments, possible binding poses of complete ligand are determined. This docking method is first tested for bound docking on a series of Cytochrome P450 (CYP450) enzyme-substrate complexes, in which experimentally determined receptor structures are used. For all complexes tested, ligand poses of less than 1 Å root mean square deviations (RMSD) from the actual binding positions can be recovered. Then the method is tested for unbound docking with modeled receptor structures for a number of protein-ligand complexes from different families including the very recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease. For all complexes, poses with RMSD less than 3 Å from actual binding positions can be recovered. Our results suggest that for docking with approximately modeled receptor structures, fragment-based methods can be more effective than common complete ligand docking approaches.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/drug effects , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/drug effects , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Ligands , Models, Chemical , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , SARS-CoV-2 , Transcription Factors/chemistry , Transcription Factors/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL